Associate Director, Commercialization Funding
Tel: (848) 932-4487
pragati.sharma@rutgers.edu
The HealthAdvance Fund®
Advancing Biomedical Innovations
Advancing Biomedical Innovations
As part of the Rutgers Optimizes Innovation initiative, HealthAdvance Fund® provides commercialization funding to assist the development of early-stage life sciences technologies and make them more attractive for continued follow-on investments from industry partners and external investors.
About the Rutgers HealthAdvance Fund®
HealthAdvance Fund® is the funding platform of Rutgers Optimizes Innovation (ROI) program established with a $4 million grant received under the National Institutes of Health (NIH) Research Evaluation And Commercialization Hub (REACH). The program aims to energize the innovation culture across all university campuses to speed up the translation of biomedical discoveries into commercially viable diagnostics, devices, therapeutics, and tools to improve health and patient care and train the next generation of innovators.
Pre-Qualification Guidelines & Form
Find out more about eligibility and application requirements for pre-qualification and the application process and timeline.
Meet the Mentors-in-Residence
Our Mentors-in-Residence (MIRs) are individually matched to the Innovator teams that have been invited to submit a full application to the program and collaborate with their matched Innovators to craft compelling proposals for a commercially viable product or solution, with a strong focus on improving human health.
Contact the Team
Executive Director, New Ventures
Tel: (848) 932-4551
vincent.smeraglia@rutgers.edu
Assistant Program Manager, New Ventures & Commercialization Funding
alb422@research.rutgers.edu
Recently Funded Projects
One of the most critical hurdles to developing CRISPR-based therapies for genetic disorders is the lack of effective delivery systems. To this end, this project aims todevelop a next-generation CRISPR delivery solution for fast and effective genome editing that supports the need for the CRISPR-based drug development market.
Tuberculosis is characterized by 10 million cases and 1.5 million deaths per year. New drugs are needed to reduce treatment duration and to treat drug-resistant infections. We propose a solution based on our preclinical drug lead (JSF-3285) that inhibits the essential ß-ketoacyl synthase and exhibits promising efficacy and safety profiles.